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Abstract. The purpose of this paper is to provide a mathematical tool to improve the optimal design of ship forms. 
It is common practice that hull forms are designed such that they have minimum wave resistance in calm water. In 
this paper a theory is described by which the effect of short waves may be incorporated. 

The basic tool we use is the ray theory. First, the appropriate free-surface condition is shown. Then, the standard 
ray method,  well-known in geometric optics, is formulated in the fluid region and at the free surface. After  an 
elimination process the eieonal equation and the transport equation are obtained. The characteristic equation for 
the nonlinear eiconal equation is derived, keeping in mind that the characteristics are not perpendicular to the wave 
fronts, due to the effect of the double-body potential due to the forward speed of the ship, which is assumed to be a 
good approximation for the steady potential. 

Numerical computations are carried out by means of the RK4 method to obtain the ray pattern. After  some 
manipulations the amplitude may be computed just as well. Finally, the nonlinear added-resistance force is 
calculated. Pictures of ray patterns for several angles of incidence are shown. Also the forces are shown. 

I. Introduction 

It is common practice that hull forms are designed such that they have minimum wave 
resistance in calm water. As has been noticed by Sakamoto and Baba [1] it is worthwhile to 
take added resistance due to waves into account as well. Large ships, sailing in an average 
sea state, encounter  mainly waves that are short compared with the ship length. Moreover ,  
ship motions for these short waves are negligible, while the value of the added resistance is 
not small compared to the wave resistance in calm water. It is found that this is true for all 
wave directions, not only for general ship forms, but also for symmetric bodies such as 
ellipsoids. It has been shown [1] that optimal forms can be designed by taking the added 
resistance into account. However ,  the approximations used are questionable. The formula- 
tion of Faltinsen's [2] approximate solution is different from the one presented by Sakamoto 
and Baba [1]. For a thorough discussion we refer to the latter authors. 

In this paper a theory is presented that is valid for ships sailing in short waves. Numerical 
computations are carried out for some simple hull shapes, such as a surface-piercing vertical 
circular cylinder and a sphere, for several wave directions. The basic equations for a slowly 
moving ship in short waves have been derived in [1]. Here  we indicate the major steps and 
arrive at the final formulation. 

The next step is to derive a short-wave theory valid in the whole field. It turns out that a 
direct application of the ray theory is possible. The eiconal equation for the phase function is 
obtained together with a transport equation for the amplitude function. The characteristics 
of the eiconal equations are computed.  Along these characteristics, the differential equation 
for the amplitude function is solved. The Neumann condition at the hull is used to describe 
the reflection of the waves. Finally, the added resistance is computed by an averaged- 
pressure integration along the wetted hull. 
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2. Free surface condition 

The ship is sailing in short waves. The motion of the ship due to these short waves is 
neglected throughout this paper and the coordinate system is fixed to the body (see Fig. 1). 
The undisturbed free surface is at z = 0. 

The fluid is assumed to be inviscid and incompressible. The flow is irrotational. Hence,  we 
introduce the velocity potential qb(x, t) as u(x, t ) =  grad qb(x, t) where u(x, t) is the fluid 
velocity. The equation for the total potential function • can be written as 

Aqb = 0 in the fluid. (1) 

The free-surface elevation is defined as z = ~'(x, y, t). At the free surface we have the 
dynamic and kinematic boundary condition, 

g ~ ' + d p , + ½ V ~ . V q b =  ~U 2/ 
f~z--f~z~x--f~Y~Y -~t2~O I a tz=~(x ,  y , t ) .  (2) 

Elimination of ~" leads to the following nonlinear condition, 

32di) + g - -  + - -  (Vqb .Vqb) + Vqb "V VcP .VcP 
Ot -----T Oz Ot 2 = 0 at z = ~'(x, y, t ) .  (3) 

Once the potential function • is determined the surface elevation may be computed by 
means of the dynamic boundary condition. The potential ~(x,  t) is split up into the following 
three components:  

• (x, t) = t~r(X ) + (~O(X) + t~(X, t ) ,  

where ~b r represents the double-body flow in calm water, ~b 0 is the steady wave potential and 
~b is the unsteady wave potential. The Froude number,  defined with respect to the ship 
length L, F =  U / V ~ ,  is assumed to be small. In this situation, Sakamoto and Baba [1] 
obtain after the coordinate transformation 

x '  = x ,  y '  = y , z '  = z -  ~(x,  y) 

Z 

Fig. i. Coordinate system. 
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the following boundary condition for the unsteady wave potential 4,(x, t), after omitting 

primes,  y]2 _ _  _ _  

g - ~ + U - ~ x + V  ~b+~zz~b 0 o n z  0 ,  (4) 

where ~'r is the free-surface elevation due to ~b r and the velocity u = grad ~b r is calculated at 
the undisturbed free surface. This free-surface condition is valid if ~b, and u-Vth are of the 
same order  of magnitude. Fur thermore ,  the terms (1/g)4,,, and ~b z must be of the same 
order. This is the case if the frequency of the waves is large, while the dimensionless 
parameter  r = w U/g remains finite. It has been shown in [1] that the terms neglected in (2) 
are small in this situation. 

For a discussion of the free-surface condition for 60 we refer to Eggers [3], Hermans and 
Brandsma [4] and Hermans and Van Gemer t  [5]. In this paper we are concerned with the 
unsteady potential th. 

3. Approximate theories 

In the literature several asymptotic results are given to compute the added resistance. 
Faltinsen et al. [2] have derived an elegant theory, based on the assumption that the body is 
slender or thin. In this theory,  the time-averaged value of the lateral force, the added 
resistance in short waves, is given by (in the notation of [1]) 

Raw = fWL Fn sin 0 d l ,  (5) 

1 2[k~o k 2 ] Fn= ~ Pg~a - c ° s 2 (  0 + a )  + ~ 0 0 s i n ( 0 + a )  , (6) 

with 

k 1 = {o~ - Vk o cos(0 + a)}2/g ,  (7) 

k2 = {k21 - k0 2 c0s2(  0 q- or)} ½ , (8 )  

where F, is the wave force acting on an infinitesimally small vertical element of the hull, 
oo = w o + koU cos a is the circular frequency of encounter,  k 0 and ~', are wave number and 
amplitude of the incident wave, ~ = 7r - g is the wave direction and 0 is the inclination of 
the waterline, V is the velocity along the streamline. The integration in (5) is performed 
along the water line WL. 

The diffracted wave is assumed to be of the form 

4~D = A e -i'°' exp[klZ + i{k0s cos(0 + a)  - nk2} ] , (9) 

where n and s are coordinates normal and tangent to the waterline in the non-shadow part of 
the wave region. 

The low-speed limit for F,, becomes 
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1 2 [ ¢~0 o Fn¼~ Pg~a[sin2( 0 + a ) + 2  g {1 - cos 0 cos(0 + a )} ]  , (10) 

where the approximation V =  U cos 0 has been used. Sakamoto  and Baba [1] arrive at a 
slightly different expression, namely 

1 2 [  .,oU 1 F',, = ~ Pg~a sin2( 0 + a )  + 2 {cos a - cos 0 cos(O+ a)} i 

g 
(11) 

Now we consider the case of a surface-piercing vertical circular cylinder. We keep in mind 
that this out of the range of the asymptotic  assumptions made by Faltinsen et al. in their 
derivation. Therefore ,  the results need not be reliable, a priori. In this case, the integration 
can be carried out analytically. Faltinsen's formula then becomes 

1 214 /] Raw = Pg(a cos a + (1 + cos2a) . (12) 
g 

Sakamoto  and Baba  [1] state that the exact result V =  2U cos 0 can be used instead of the 
thin-ship approximation V =  U cos 0. In this case a good candidate for the added resistance is 
provided by the expression 

Raw=~ Pg¢a -~ c o s a +  ( l + s i n 2 a )  . (13) 
g 

They also state that, due to evanescent wave modes along the hull, their results may lead to 
an overest imation.  In the next section we derive results in the short-wave case without the 
geometr ic  restrictions of [1] and [2]. 

4. The ray method 

The time dependent  potential  ~b(x, t) has to be a solution of 

A~b = 0 in the fluid, 

IN a a ]2 04, 1 O + u  + v  ~b+ 0 o n z  0 ,  g 7y 

o4, 
- 0 on the ship's hull .  

On 

(14) 

(15) 

(16) 

At infinity the incoming wave field consists of plane waves, 

~)inc  = e i k ° ( x  cos a + y  s in  a ) - i w t  (17) 

where k 0 = wZ/g for deep water  and o~ = w 0 + k 0 U c o s  a is the relative frequency. We 
consider short waves with respect to the ship length L, i.e. koL = w~L/g >> 1. However ,  it is 
more  convenient  to choose k = w Z/g as the large parameter .  

We introduce the ray expansion 



~b(x, t; k) = a(x, k) e iks(x)-i°'t , 
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(18) 

where S(x) is the phase function and a(x, k) the amplitude function. The latter is written as a 
regular series expansion with respect to inverse powers of ik, 

a(x, k) = ~ ay(x) j=o ( ~  + °((ik)-N) ' (19) 

Our aim, in this paper, is to determine S(x) and a0(x ). 
Insertion of (18) into the Laplace equation (14) gives 

-A2V3S.V3Sa + ik(2V3a.g3S + aA3S ) + O ( 1 )  = 0.  (20) 

The subscript 3 is used to indicate the three-dimensional V and A operator. If no subscript is 
used the operator is two-dimensional in the horizontal plane. Comparing orders of mag- 
nitude in (20) leads to a set of equations for S and a 0 to be satisfied in the fluid region: 

O(k2): V3S.V3S=0,  (21) 

O(kl):  2V3a o.v3S + aoA3 S = 0 .  (22) 

Next we insert (18) into the flee-surface condition (15) and obtain 

-k2{1 - u "~'S) 2 - iSz}a - ik{2u .Va - 2(u-VS)(u .Va) 

- u - V ( u - V S ) a  +ia~} + 0 ( 1 )  = O. (23) 

Comparing orders of magnitude in (23) yields 

O(k2): iSz = (1 - u .VS) 2 / (24) 

O(kl):  aoz = i{2u-Va o - 2(u-VS)(n-Vao) - u .V(u "VS)ao} / at z = 0.  (25) 

The equation for the phase function at the free surface is obtained by elimination of S z. 
Equations (21) and (24) yield the eiconal equation 

( 1 -  u-VS) 4 - v S . V S  = 0 ,  (26) 

while (22) and (25) yield the transport equation 

[2VS + 4(1 - u .VS)3u] .Va 0 + aoMS = 0 ,  (27) 

where MS = A3S - 2u-V(u .VS)(1 - u "VS) 2 . 
In order to solve the eiconal equation (26) we introduce the notation S~ = p, Sy = q, 

p = (p ,  q), write (26) in the standard form F(x, y, S, p, q )=0 and apply the method of 
characteristics. The equation for the characteristics are the Charpit-Lagrange equations 
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dx 
- -do-  = F p  = - • 

- 4 (1  u p ) 3 u - 2 p  

d y =  
= -4 (1  - u .p )3v  - 2 q  Fo do- 

dp  (F  x + pFs )  4(1 3 - : - u . p )  

do" 

dq (F V + qFs) 4(1 3 . - = - u ' p )  ( U y ' p )  
do" 

(28) 

The characteristic curves, which are solutions of these equations, are called "rays" ,  as in 
geometric optics. The phase function is obtained by solving the equation 

dS 
= pFq + qFq = -4 (1  - u .  p)3 + 2p (29) 

The rays defined this way are not curves perpendicular to the wave fronts S = constant. The 
transport equation along the rays becomes 

d a  0 
do- = a° MS"  (30) 

To solve (28)-(30)  we need initial conditions in the far field for the incident field and 
boundary conditions at the hull for the reflected field. We restrict ourselves to hull shapes 
that are perpendicular to the water surface at the waterline. To simplify the computations we 
restrict ourselves also to shapes with an analytic double-body solution, such as a circular 
cylinder, a sphere or elliptic cylinder. In the far field we consider plane waves S(x)= 
constant = S O along a line L: ax + by = c, where c is chosen large enough. The initial 
conditions are found as follows. Along L the condition S(x,  y ) =  constant yields after 
differentiation a relation between p and q along L, 

bp = aq . (31) 

Equations (31) and (26) yield the required initial conditions for p and q. 
To compute the initial condition for the reflected waves, use is made of the boundary 

condition at the object. The boundary condition has to be obeyed by the superposition of the 
incident field and the reflected field, 

~b(x, t) = a ( i ) ( x ,  k )  e ikS'i)(')-i'°t + a(r)(X, k) e ikS~r)( ' )- io ' t  . (32) 

The boundary condition dOIdn = 0 yields 

{ika(i)(n • VS (r)) + n . ~7a(i) } e iks( i~-i '° t  

= - {ika(r)(n • VS ~r~) + n-~Ta(r)} e ikS(r)-i°Jt (33) 

from which follows 

s ( r ) ( x )  = s(i)(x) at the ob jec t ,  

and 

(34) 



a(o,.)(x) = _ a(oi)(x) n .  VS (i) 
n VS (') 

at the ob jec t .  
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(35) 

Relation (34) is the initial condition for the reflected rays (Fig. 2). 
The waterline is given x = x(r) .  We then obtain, after differentiation of (34) with respect 

t o  ~', 

VS (r)- t = VS (°-  t ,  (36) 

where t is the vector tangent to the curve at the point of interception. The vector p = VS is 
the vector normal to the wave front S = constant. Therefore ,  we may say that the normal to 
the wave front obeys Snellius' reflection law at the interface. The rays do not coincide with 
the normal to the wavefront as follows from the first two equations in (28). We assume that 
VS (i)" t is computed by the integration of (28) up to the surface, then (36) is a relation 
between the initial values of p and q for the reflected rays. The second relation is the eiconal 
equation. Hence,  p and q are known explicitly at the waterline. Integration of (28) yields the 
reflected rays. The integration method used is RK4 which turns out to be a stable procedure 
for these ordinary differential equations. The next step is to compute the amplitude along 
the rays. Finally, we are interested in the amplitude of the incident and reflected waves at 
the waterline, because, as soon as the potential function is known, the second-order added 
resistance can be computed by means of a pressure integration along the hull. 

Integration of (30) is relatively simple; we can write 

a0(o- ) = a0(o-0) exp MS do- , (37) 

where a0(o- ) is the initial value of the amplitude. The function MS, however,  contains, 
among others, derivatives with respect to the vertical coordinate z. These terms can be 
handled by means of (24) and differentiation of (24). Finally, we obtain 

sxx {1- :l slu: o: T o:} 
~x ' )y  

+ Sxy {-4lVgluv - 2 - -  

-If- Syy {1 - 21~7S]v 2 

SxSy : } 
S~ + Sy 

s2S--~ o2 } - 2 [~S lV(n  " u) " VS  . 
x "~y 

(38) 

i 

Fig. 2. Reflect ion of  rays. 
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The terms p = Sx,  q = Sy are known along the rays. The terms Sx~ , Sxy and Syy must be 
computed with care. From the characteristic equations we have 

dx dy _ dp 
Sx~ ~ + SxY do" do" ' (39) 

where dx/dcr, dy/dcr, d p / d c r  are expressed in known functions by means of (28). 
A second relation for Sxx and Sxy can only be obtained by means of numerical differentia- 

tion of values of S x along neighbouring rays, see Fig. 3. 
We take o-= constant and write 

Ap = Sxx A x + S~y Ay (40) 

where Af = f ( i ,  j + 1) - f ( i ,  j ) .  Then (39) and (40) yield 

Ap y,, -p ,~  Ay 
Sxx = Ax y,~ - x~ Ay ' (41) 

Ap x - p ~  Ax 
SxY = Ay x~ - y~ Ax " (42) 

We also find 

q~, - SxyX,~ A q  x~ - q,~ A x  
Syy - Y~ - A y  x.  - y~  A x  " (43) 

Good  results are obtained with the first part of (43), as long as y~ is not close to zero. 
The amplitude of the incident waves is computed according to (35). The amplitude of the 

reflected wave at the object is computed by means of (35). To compute the forces no further 
integration of the reflected amplitude is carried out. Looking at the computed ray patterns 
one may hardly expect that the amplitude of the reflected wave can be computed by means 
of (35) with sufficient accuracy. The numerical differentiation in MS leads to large errors if 
the rays diverge too much. 

. . ~ ~ ~ - ~ o o n s t  

/ =co,st 

Fig. 3. Numerical differentiation. 
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5. The added resistance 

The mean resistance Faw is defined as the t ime-averaged force act ing on the hull, due to 

waves. The force in the x-direction is the added resistance. In our case both the x and y 
component  may be obtained. In general,  we have 

Faw = - p n  dl d z ,  (44) 
=-~ t 

where WL is the waterline and the bar indicates that the force is averaged with respect to 
time. The pressure p follows from Bernoulli 's  theorem,  

1 
__! ( p  -- Po) = ~t -[- V3~)r "V3~) AF 2 V3~) "V3~) -[- gz  . (45) p 

Again, the influence of the steady 
Inserting (45) into (44) leads to the 

1 
Faw=--fwL'~ pg~2nd l -  f so f  { - 

wave potential  ~b0(x ) is neglected in this expression. 
expression for the steady second-order  force 

pV3~ "V3q~ n d s ,  (46) 

where S O is the wetted surface in still water  and ~" = -(~b t + u.V~b)/g. Combining (32) and 
(46) leads to the following expression for the mean force 

1 fw "~s(i))~4a(°i) F aw - 4 kp L [(~75(i) + ( ~ S  (r) " ~s(r))Ja(or)]2 n dl 

1 fw [ (r)2 +~ kp L a(i)2[vs(i)[ + a° IVS(r)[ 

_(i)~(r) (vS(i)  "vs(r) "~_ Ivs">l Ivs(  l) ] 
+ 2u 0 u 0 ivs(i  I + [vs(r) I j n d l .  (47) 

The numerical ray tracing gives all the terms in the integral. Hence ,  the mean force may be 
computed  now and compared  with the results of the approximate  theories (12) and (13). 

6. Results and discussion 

First, the results are shown for a vertical circular cylinder with radius equal to unity in waves 
and current. The computed  ray pat terns differ a lot if the parameters  are changed. This is 
due to the fact that  the local velocity has a significant effect on the local group velocity, not 
only on its magnitude,  but also on its direction. We keep in mind that we carry out the 
computat ions with the exact dispersion relation describing the wave pat tern at low Froude 
number  and for short waves. Figure 4 shows the ray patterns for three values of the 
dimensionless pa ramete r  z. The rays are generated in the direction of the positive x-axis. The 
wavefronts  are parallel to the y-axis in the far field. Positive values of r = Uto/g correspond 
to a flow field in the positive x-direction. For  positive values of r one obtains a pat tern of the 
reflected rays that tends to have a caustic if the pa ramete r  ~- is large enough. For the 
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(a) (b) 

(c) (d) 
Fig. 4. Ray pattern for a circular cylinder with a = 0: (a) ~" = 0.25, (b) ~" = 1.0, (c) ~-= -0.1, (d) r = -0.25. 

relatively large value ~-= 1 the reflected pa t te rn  resembles the caustic behaviour  of  the 

Kelvin pa t te rn  of  a ship sailing in still water.  

Howeve r ,  for  negative values of  the pa rame te r  r, that  means  that  the flow is directed 

against the wavefield, the incident field shows caustics, and the ampli tude can not  be 

descr ibed by the me thods  of  this paper .  A uniformly valid expansion is needed  near  the 

caustic lines. In Fig. 5a the second-order  added  resistance is shown in compar i son  with the 
approximate  results of  Falt insen et ah [2]. They  give a very good  cor respondence  for small 
values of  ~-, a l though the requi rements  for  the approximate  results to be reliable are not  met.  

One  cannot  say that  a circular cylinder looks like a thin body.  The  approximate  results of  

Sakamoto  and Baba  [1] have a steepness near  z = 0 half  as large. 

Figure 6 shows the ray pat tern  when  the angle of  incidence is ~-/4, for  two values of  the 

pa rame te r  7. The  mean  surge and sway forces are shown in Fig. 5b. Here ,  the two 

approximate  results for  the force in the x-direct ion are the same,  they both  underes t imate  

the added-res is tance force. 



Slowly moving hull forms 73 

21 

18 

x 
x 

x 
x 

x 
× 

x 
x x ~ 

xX~ ~ 

x~* 

. . . I  . . . .  n . . . .  n . . . .  h . . . ~  . . . .  T . . . . I  . . . .  I . . . .  a . , , , i  

a.~ 1 

P0 

lg 

+ 

+ 
+ 

+ × 
x + ×  

+ x  
+ × ×  

, x  
× m  

x +  
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(a) (b) 
Fig. 5. (a) A d d e d  r e s i s t a n c e  F~ = (_F~w)x/p~" ~, c~ = 0 ,  × × × c i rcu lar  c y l i n d e r ,  *** s p h e r e ,  - -  
S a k a m o t o .  (b )  C i r c u l a r  c y l i n d e r ,  c~ = 45 °, × x x a d d e d  r e s i s t a n c e  E , ,  + + + m e a n  s w a y  f o r c e  Fy,  

S a k a m o t o  (Fx) .  

F a l t i n s e n ,  - - - 

F a l t i n s e n  a n d  

Figure 8a shows the case where the wave fronts of  the incident waves  are parallel to the 
current. Again,  it is seen that the double-body flow has great influence. Especially close to 
the cylinder, the rays are nearly parallel to the cylinder. This explains the rather small values 
of  the mean force in the x-direction (Fig. 7a). The y-force (Fig. 7b) shows a more  regular 
behaviour.  

To get an idea of  the influence of  a three-dimensional  double-body flow field, computa-  
tions have been carried out for a sphere with the same radius as the circular cylinder. It is 
clear that the effect of  the finite draft is not negligible, due to the changes of  the flow field. 
Figure 8b shows an example of  a ray pattern. The parameters are chosen to be the same as in 
Fig. 8a for the circular-cylinder case. The forces, shown in Fig. 9, are very different from the 
ones  shown in Fig. 7. Again,  it is remarkable that the approximate results of  Faltinsen are 
very close to our computed results. In his computat ions  no difference can be noticed in the 
x-forces acting on a circular cylinder or a sphere. 

(a) (b) 
Fig. 6. R a y  p a t t e r n  f o r  a c i rcu lar  c y l i n d e r  w i t h  a = 45 °. (a) ~ = 0 . 2 5 ,  (b )  ~" = 0 .5 .  
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(a) (b) 
Fig. 7. Circular cyl inder,  a = 90 °. (a) >< x x added resistance Fx, Falt insen,  - - -  S a k a m o t o .  (b) + + + mean  
sway  force Fy. 

(a) (b) 
Fig. 8. Ray pattern for (a) a circular cyl inder and (b) a sphere  with a = 90 ° and ~- = 0.5.  
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Fig. 9. Sphere ,  a = 9 0  °, >< ><>< added resistance F~, + + +  mean  sway force E,., Falt insen (F~). 
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In conc lus ion ,  one  can say tha t  the  c o m p u t a t i o n s ,  ca r r i ed  ou t  by  m e a n s  of  the  ray  m e t h o d  

as de sc r ibed  he re ,  give re l i ab le  resul t s  for  the  s e c o n d - o r d e r  wave  forces  ac t ing on bod i e s  

p ie rc ing  the  f ree  sur face  ver t ica l ly .  In  the  case of  a flow field and  a field of  shor t  waves  

en t e r ing  f rom the  s ame  half  p l ane ,  resul ts  can be  o b t a i n e d  ove r  a wide  range  of  p a r a m e t e r s .  

F u r t h e r  inves t iga t ions  can be  ca r r i ed  ou t  in the  s i tua t ion  where  the  inc iden t  wave  field is 

fo rced  by  a d o u b l e - b o d y  flow to g e n e r a t e  caust ics.  A fu r the r  ex tens ion  to  hull  fo rms  tha t  a re  

m o r e  gene ra l  than  the  one  de sc r ibed  he re ,  is poss ib le  in pr inc ip le .  In  tha t  case,  a fast  code  

mus t  be  ava i l ab le  to c o m p u t e  the  d o u b l e - b o d y  ve loc i ty  c o m p o n e n t s  and  its de r iva t ives  in a 

large  reg ion  a r o u n d  the  ship.  

T h e  de sc r ibed  m e t h o d  was m o t i v a t e d  by  the  n e e d  to ob t a in  tools  for  the  o p t i m a l  des ign  of  

hull  forms.  The  resul ts  a re  also of  i m p o r t a n c e  as the  a sympto t i c  l imits for  the  ca lcu la t ion  o f  

the  wave-d r i f t  d a m p i n g  as d e s c r i b e d  by  H u i j s m a n s  and  H e r m a n s  [6] in the i r  un i fo rm  m e t h o d  

to desc r ibe  the  dr i f t  forces  at low speed .  In  the  h igh - f r equency  l imit ,  as d e s c r i b e d  he re ,  the  

m o t i o n  of  the  ship  at  the  wave  f r equency  is negl ig ib le ,  hence  the s e c o n d - o r d e r  wave-d r i f t  

force  and the  s e c o n d - o r d e r  a d d e d  res i s tance  are  a p p r o x i m a t e l y  the  same.  
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